最新情報最新情報

充電・放電時に二次電池内部では何が起こっているか?

放電のしくみ

電池から電気を取り出すのが放電です。一般的な一次電池および二次電池内では、電気化学反応が起こっており、それによって電子が放出されます。では、電池内の電気化学反応によって、どの様にして電気が発生するのかを見てみましょう。
電池内では正負の二つある電極の内、負極では酸素と結合することなどによる酸化反応によって電子が放出されます。逆に正極では電子を吸収することによって還元反応が起こります。つまり負極で発生した余剰電子が、正極で起こる還元反応によって不足する電子を補うように移動しているのです。それぞれの極で発生する酸化還元反応は、電極の材質や電解液によって異なりますが、これらは化学反応を起こすことができなくなるまで、つまり反応に必要な物質がなくなるまで化学反応を起こし、つまり完全放電するまで電気を発生させ続けることができます。

極で発生する化学反応です。

充電のしくみ

一方、電気を蓄電池に送り込んで再使用できるようにするのが充電です。完全放電してしまった電池内では、すでに電気化学反応が起こらない状態で電池内の物質が化学平衡状態を保っています。しかし正極から電気を抽出し負極に電子を与えるような化学反応を起こすことにより、放電前の状態に戻すことができます。放電時とは逆に正極で酸化反応が起こり、負極で還元反応が行われるのです。二次電池内では放電時とは逆に外部電源から送り込まれた電子によって、電池内で放電時とは逆の電気化学反応が起こしているのです。
一方、一次電池は充電を行いません。化学反応が不可逆反応であるか、可逆反応であっても充電を行うコストが高いなど、メリットが少ない場合が多いために使い捨てています。

(a)充電時の電子の移動です。(b)放電時の電子の移動です。

充放電時の化学反応と電気特性

では、充放電時の化学反応の例と、様々な電池の電気特性を「電気化学」の観点から説明します。
まずは蓄電池内部の化学反応を、NiMH(ニッケル水素蓄電池)を例にして説明しましょう。
NiMHでは正極にニッケル酸化合物を、負極には水素吸蔵合金を用います。充電時には正極で水酸化物イオンから水分子が発生します。水分子は負極で水素原子と水酸化物イオンに分解され、水素原子は水素吸蔵合金に吸蔵されます。化学反応式は下記の通りです(Mは水素吸蔵合金を意味しています)。

正極と負極の化学反応式

放電時には正極で水分子から水酸化物イオンが発生し、電解質の中を正極から負極へと移動します。負極へ移動した水酸化物イオンは水素吸蔵合金から水素イオンを受け取り、水分子に戻ります。化学反応式は下記の通りです。

正極と負極の化学反応式

これを電気化学平衡式で書くと、次のようになります。

電気化学平衡式
ニッケル水素蓄電池における充電時の電気化学反応です。ニッケル水素蓄電池における放電時の電気化学反応です。

この2行目は電気化学反応での標準電極電位E0を表す時に使うもので、電池の電気特性は理論的にどれだけの電位を出しうるのか、という標準電極電位で表すことができます。
電池内では上記のような化学反応を通して電気が発生するわけですが、どの程度の電気を発生させられるかは電池の種類によって異なります。原子、分子に個性があるように、発生する電子のエネルギーについても電気化学反応によって異なります。 それぞれの極で発生する電子のエネルギーはSHE(Standard Hydrogen Electrode:標準水素電極)から測定した電位で定義されますので、正極と負極の物質の組み合わせで発生する電位差が理論的な起電力として定義されます。これが標準電極電位です。「vs. SHE」は「SHE基準」でという意味です。

例えばリチウム・イオン蓄電池の場合、正極にコバルト酸リチウム(LiCoO2)を利用し、負極に炭素を利用してLiから電子を取り出した場合、SHEとの電位差は正極が+0.87V、負極は-2.83Vですので、標準電極電位は0.87-(-2.83)=3.7V vs. SHEとなります。同じくNiCd蓄電池の場合は1.32V vs. SHE、NiMH蓄電池の場合は1.55V vs. SHEとなっています。とはいえ、これらは理論的な値であるため、実際はもう少し低く、NiCd蓄電池、NiMH蓄電池の起電力は約1.2Vになっています。

鉛蓄電池、ニカド蓄電池およびニッケル水素蓄電池、リチウム・イオン2次電池の起電力です。

また、車載用のバッテリーなどでよく使用されている鉛蓄電池の場合は、正極に二酸化鉛(PbO2)を、負極に鉛(Pb)を採用していますが、正極のSHE基準の標準電極電位は1.70、負極は-0.35ですので、約2.0V vs. SHEとなります。これは鉛蓄電池の起電力の公称値とほぼ一致しています。各電池の標準電極電位は、表1にまとめておきました。

鉛蓄電池、ニッケル・カドミウム蓄電池およびニッケル水素蓄電池、リチウム・イオン畜電池の電極材質と標準電極電位です。

では、この起電力を向上させるにはどの様にすれば良いのでしょう。リチウム・イオン蓄電池についてはLiが電子を放出する際の電位は約-3.0V vs. SHEですので、ほぼ理論的下限に近い値を出しています。ですので、正極側の電位を上げるしかなく、その方向で研究が進められています。
もう一つは、1つの電池を「セル」という単位として扱います。このセルを複数個、直列に接続することで電圧を上げることができます。例えば鉛蓄電池の場合は1セルで2Vですので、車載用12Vバッテリーの場合は6セルを直列に繋いでいます。同様のことはノートパソコンでも行われていて、例えば10.8V駆動の場合、リチウム・イオン蓄電池を3セル直列で接続することで、その起電力を実現しています。
最後にメモリ効果について説明します。メモリ効果というのはNiCd蓄電池やNiMH蓄電池の場合、放電しきる前に再度充電を行うと、電池の電圧が下がってしまいます。以前の放電状況の影響が出てしまうことに依存しているためメモリ効果と呼びます。デジタルカメラなど高電圧が必要な機器の場合、放電しきる前に充電をすると、動作に必要な電圧を得られなくなってしまいます。これは完全放電することで回復することが知られていますが、なぜメモリ効果が存在するのかについては、よくわかっていません。

メモリ効果による電圧低下のグラフです。継ぎ足し充電を繰り返してメモリ効果が起きています。

これに対しリチウム・イオン蓄電池はメモリ効果がなく、繰り返し利用するのに向いています。 ただし正極負極共に、電極構造材のすき間にLiが出入りするインターカレーション反応が起こります。これにより電極材料が充放電によって若干の膨張・収縮を行いますが、比較的安定しています。

インターカレーション反応です。(a)収縮と(b)膨張の図です。

インターカレーション反応で構造が壊れることはそうありませんが、過充電・過放電を繰り返すなどした場合に金属リチウムが析出してしまうなどで構造材が破壊されて膨張したままになってしまうことがあります。これはリチウム・イオン蓄電池を採用しているスマートフォンの電池パックが膨張し、時に発火したり爆発したりする原因になっています。

関連コラム

おすすめ製品

各種二次電池(バッテリ)やコンデンサ・キャパシタの、開発・評価・試験・生産にて、
松定プレシジョンの製品をご利用いただけます。
松定プレシジョンECDシリーズの本体画像です。充放電電源
ECDシリーズ
松定プレシジョンECPUシリーズの本体画像です。四角い形をしています。充放電電源
ECPUシリーズ
tyokuryu.jpg直流安定化電源
denshihuka.jpg電子負荷
bi_polar.jpgバイポーラ電源/電力増幅器

参考文献

  • トランジスタ技術SPECIAL2013 Winter, No.121
  • 電気化学便覧 第6版
  • 電子移動の化学 -電気化学入門

最新情報

お知らせ・イベント情報
コラム

最近の記事

電気二重層キャパシタ(EDLC/スーパーキャパシタ)は電力を平準化する
蓄電方法の種類と特徴
充電・放電時に二次電池内部では何が起こっているか?
電池の基本 種類と特徴を知る
波高率(クレストファクタ)とは

お電話でのお問い合わせはこちら
お問い合わせは電話0120-747-636

製品情報
電源装置
非破壊検査関連機器
顕微鏡/デジタルカメラ
分析機器
生産性/環境改善関連機器
レーザマーカ
光センサ
導入事例
導入事例
(アプリケーション・用途)
最新情報
お知らせ・イベント情報
コラム
企業情報
会社概要
経営理念
事業内容
沿革
事業所一覧
採用情報
松定とは
仕事を知る
先輩インタビュー
モノづくりを知る
採用Q&A
募集について
キャリア採用
新卒の方
お問い合わせ
カタログ請求
価格お問い合せ
技術お問い合わせ
ご相談窓口